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Abstract
While relation extraction is an essential task in
knowledge acquisition and representation, and
new-generated relations are common in the
real world, less effort is made to predict unseen
relations that cannot be observed at the train-
ing stage. In this paper, we formulate the zero-
shot relation extraction problem by incorporat-
ing the text description of seen and unseen re-
lations. We propose a novel multi-task learn-
ing model, zero-shot BERT (ZS-BERT), to di-
rectly predict unseen relations without hand-
crafted attribute labeling and multiple pairwise
classifications. Given training instances con-
sisting of input sentences and the descriptions
of their relations, ZS-BERT learns two func-
tions that project sentences and relation de-
scriptions into an embedding space by jointly
minimizing the distances between them and
classifying seen relations. By generating
the embeddings of unseen relations and new-
coming sentences based on such two functions,
we use nearest neighbor search to obtain the
prediction of unseen relations. Experiments
conducted on two well-known datasets exhibit
that ZS-BERT can outperform existing meth-
ods by at least 13.54% improvement on F1
score.

1 Introduction

Relation extraction is an important task in the natu-
ral language processing field, which aims to infer
the semantic relation between a pair of entities
within a given sentence. There are many appli-
cations based on relation extraction, such as ex-
tending knowledge bases (KB) (Lin et al., 2015)
and improving question answering task (Xu et al.,
2016). Existing approaches to this task usually
require large-scale labeled data. However, the la-
beling cost is a considerable difficulty. Some re-
cent studies generate labeled data based on distant
supervision (Mintz et al., 2009; Ji et al., 2017).
Nevertheless, when putting the relation extraction
task in the wild, existing supervised models cannot

well recognize the relations of instances that are
extremely rare or even never covered by the train-
ing data. That said, in the real-world setting, we
should not presume the relations/classes of new-
coming sentences are always included in the train-
ing data. Thus it is crucial to invent new models
to predict new classes that are not defined or ob-
served beforehand. Such a task is referred as zero-
shot learning (ZSL) (Norouzi et al., 2013; Lampert
et al., 2014; Ba et al., 2015; Kodirov et al., 2017).
The idea of ZSL is to connect seen and the un-
seen classes by finding an intermediate semantic
representation. Unlike the common way to train
a supervised model, seen and unseen classes are
disjoint at training and testing stages. Hence, ZSL
models need to generate transferable knowledge
between them. With a model for ZSL relation ex-
traction, we will be allowed to extract unobserved
relations, and to deal with new relations resulting
from the birth of new entities.

Existing studies on ZSL relation extraction are
few and face some challenges. First, while the typ-
ical study (Levy et al., 2017) cannot perform zero-
shot relation classification without putting more
human effort on it, as they solve this problem via
pre-defining question templates. However, it is
infeasible and impractical to manually create tem-
plates of new-coming unseen relations under the
zero-shot setting. We would expect a model that
can produce accurate zero-shot prediction without
the effort of hand-crafted labeling. In this work,
we take advantage of the description of relations,
which are usually publicly available, to achieve the
goal. Second, although there exists studies that
also utilize the accessibility of the relation descrip-
tions (Obamuyide and Vlachos, 2018), they simply
treat zero-shot prediction as the text entailment
task and only output a binary label that indicates
whether the entities in the input sentence can be
depicted by a given relation description. Such prob-
lem formulation requires the impractical execution
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Figure 1: An example for elaborating our ZS-BERT.

of multiple classifications over all relation descrip-
tions, and cannot make relations comparable with
each other.

This paper presents a novel model, Zero-shot
BERT (ZS-BERT), to perform zero-shot learning
for relation extraction to cope with the challenges
mentioned above. ZS-BERT takes two model in-
puts. One is the input sentence containing the pair
of target entities, and the other is the relation de-
scription, i.e., text describing the relation of two
target entities. The model output is the attribute
vector1 depicting the relation. The attribute vector
can be considered as a semantic representation of
the relation, and will be used to generate the final
prediction of unseen relations. We think a better
utilization of relation descriptions by representa-
tion learning is more cost-effective than collecting
tons of instances with labeled relations. Therefore,
an essential benefit of ZS-BERT is free from heavy-
cost crowdsourcing or annotation, i.e., annotating
what kind of attribute does a class have, which is
commonly used in zero-shot learning problem (Lu
et al., 2018; Lampert et al., 2009).

Figure 1 depicts the overview of the proposed
ZS-BERT, which consists of five steps. Each train-
ing instance is a pair of input sentence Xi and its
corresponding relation’s description Dj . First, we
learn a projection function f that projects the in-
put sentence Xi to its corresponding attribute vec-
tor, i.e., sentence embedding. Second, we learn
another mapping function g that encodes the re-
lation description Dj as into its corresponding at-
tribute vector, which is the semantic representation
of Dj . Third, given the training instance (Xi, Dj),
we train ZS-BERT by minimizing the distance be-

1The terms, “attribute vector”, “embedding”, and “repre-
sentation”, are used interchangeably throughout this paper.

tween attribute vectors f(Xi) and g(Dj) in the em-
bedding space. Fourth, with the learned g(Dl), we
are allowed to project the unseen relation’s descrip-
tion Dl into the embedding space so that unseen
classes can be as separate as possible for zero-shot
prediction. Last, given a new input sentence Zk,
we can use its attributed vector f(Zk) to find the
nearest neighbor in the embedding space as the fi-
nal prediction. In short, the main idea of ZS-BERT
is to learn the representations of relations based
on their descriptions, and to align the representa-
tions with input sentences, at the training stage. In
addition, we exploit the learned alignment projec-
tion functions f and g to generate the prediction of
unseen relations for the new sentence so that the
zero-shot relation extraction can be achieved. Our
contributions can be summarized as below.

• Conceptually, we formulate the zero-shot re-
lation extraction problem by leveraging text
descriptions of seen and unseen relations. To
the best of our knowledge, we are the first at-
tempt to directly predict unseen relation under
the zero-shot setting via learning the represen-
tations from relation descriptions.

• Technically, we propose a novel deep learning-
based model, ZS-BERT2, to tackle the zero-
shot relation extraction task. ZS-BERT learns
the projection functions to align the input sen-
tence with its relation in the embedding space,
and thus is capable of predicting relations that
were not seen during the training stage.

• Empirically, experiments conducted on two
well-known datasets exhibit that ZS-BERT
can significantly outperform state-of-the-art
methods for predicting unseen relations under
the ZSL setting. We also show that ZS-BERT
can be quickly adapted and generalized to few-
shot learning when a small fraction of labeled
data for unseen relations is available.

2 Related Work

BERT-based Relation Extraction. Contextual
representation of words is effective for NLP tasks.
BERT (Devlin et al., 2019) is a pre-training lan-
guage model that learns useful contextual word
representations. BERT can be moderately adopted

2Code and implementation details can be accessed via:
https://github.com/dinobby/ZS-BERT.
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for supervised or few-shot relation extraction. R-
BERT (Wu and He, 2019) utilize BERT to gener-
ate contextualized word representation, along with
entities’ information to perform supervised rela-
tion extraction and have shown promising result.
BERT-PAIR (Gao et al., 2019) makes use of the
pre-train BERT sentence classification model for
few-shot relation extraction. By pairing each query
sentence with all sentences in the support set, they
can get the similarity between sentences by pre-
trained BERT, and accordingly classify new classes
with a handful of instances. These models aim to
solve the general relation extraction task, which
are more or less having ground truth, rather than
having it under the zero-shot setting.

Zero-shot Relation Extraction. Relevant studies
on zero-shot relation extraction are limited. To the
best of our knowledge, there are two most simi-
lar papers, which consider zero-shot relation ex-
traction as two different tasks. Levy et al. (2017)
treat zero-shot relation extraction as a question an-
swering task. They manually define 10 question
templates to represent relations, and generate the
prediction by training a reading comprehension
model to answer which relation satisfies the given
sentence and question. However, it is required to
have human efforts on defining question templates
for unseen relations so that ZSL can be performed.
Such annotation by domain knowledge is unfeasi-
ble in the wild when more unseen relations come.
On the contrary, the data requirement of ZS-BERT
is relatively lightweight. For each relation, we only
need one description that could express the seman-
tic meaning. The descriptions of relations are easier
to be collected as we may access them from open
resources. Under such circumstances, we may be
free from putting additonal effort to the annotation.

Obamuyide and Vlachos (2018) formulate ZSL
relation extraction as a textual entailment task,
which requires the model to predict whether the
input sentence containing two entities matches
the description of a given relation. They use En-
hanced Sequential Inference Model (ESIM) (Chen
et al., 2016) and Conditioned Inference Model
(CIM) (Rocktäschel et al., 2015) as their entail-
ment methods. By pairing each input sentence with
every relation description, they train the models to
answer whether the paired texts are contradiction
or entailment. This allow the model to inference on
input sentence and unseen relation description pair,
thus is able to predict unseen relation accordingly.

3 Problem Definition

Let Ys = {y1s , ..., yns } and Yu = {y1u, ..., ymu } de-
note the sets of seen and unseen relation labels,
respectively, in which n = |Ys| and m = |Yu| are
the numbers of relations in two sets. Such two
sets are disjoint, i.e., Ys ∩ Yu = ∅. For each re-
lation label in seen and unseen sets, we denote
the corresponding attribute vector as ais ∈ Rn×d

and aiu ∈ Rm×d, respectively. Given the training
set with N samples, consisting of input sentence
Xi, entities ei1 and ei2, and the description Di

of the corresponding seen relation yjs , denoted as
{Si = (Xi, ei1, ei2, Di, y

j
s)}Ni=1. Our goal is to

train a zero-shot relation extraction modelM, i.e.,
M(Si)→ yis ∈ Ys, based on the training set such
that usingM to predict the unseen relation yku of
a testing instance S′, i.e.,M(S′)→ yju ∈ Yu, can
achieve as better as possible performance.

We train the modelM so that the semantics be-
tween input sentence and relation description can
be aligned. We learn M by minimizing the dis-
tance between two embedding vectors f(Xi) and
g(Di), where learnable functions f and g project
Xi and Di into the embedding space, respectively.
When new unseen relation yju and its description is
in hand, we can project the description of yju to the
embedding space by function g. When testing, new
instance S′ = (Zj , ej1, ej2, Dj) is input, in which
Zi denotes new sentence containing entities ej1 and
ej2, we project Zi to the embedding space by our
learned function f , and find the nearest neighbor-
ing unseen relation yju, where Zi and yiu are both
unknown at the training stage.

4 The Proposed ZS-BERT Model

We give an overview of our ZS-BERT in Figure 2.
The input sentenceXi is tokenized and sent into the
upper-part ZS-BERT encoder to obtain contextual
representation. We specifically extract the repre-
sentation of [CLS], H0, and two entities’ represen-
tations H1

e , H
2
e , and then concatenate them to de-

rive sentence embeddings âis, by a fully-connected
layer and activation operation. In the bottom part,
we use Sentence-BERT (Reimers and Gurevych,
2019) to obtain attribute vector ais for seen rela-
tions by encoding the corresponding description
of relation Di. We train ZS-BERT under a multi-
task learning structure. One task is to minimize the
distance between attribute vector ais and sentence
embedding âis. The other is to classify the seen
relation yjs at the training stage, in which a softmax
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Embedding
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Figure 2: The overall architecture of our model.

layer that accepts relation embedding is used to
produce the relation classification probability. At
the testing stage, by obtaining the embeddings of
new-coming sentences and unseen relations, we
use âis and nearest neighbor search to obtain the
prediction of unseen relations.

4.1 Learning Relation Attribute Vectors

For each seen and unseen relation, we learn its rep-
resentation that depicts the corresponding semantic
attributes based on relation description Di. Most
relations are well-defined and their descriptions
are accessible from online open resources such as
Wikidata 3. We feed relation description Di into a
pre-trained Sentence-BERT encoder (Reimers and
Gurevych, 2019) to generate the sentence-level rep-
resentation as the attribute vector ai of relations.
This procedure is shown in the bottom part of Fig-
ure 2. The ground truth relation of the example
is publisher, along with its description Organiza-
tion or person responsible for publishing books,
games or software. We feed only the relation de-
scription to the Sentence-BERT in order to get the
attribute vector. That said, we consider the de-
rived Sentence-BERT to be a projection function g
that transforms the relation description Di into ai.
Note that the relation attribute vectors produced by
Sentence-BERT are fixed during model training.

3https://www.wikidata.org

4.2 Input Sentence Encoder
We utilize BERT (Devlin et al., 2019) to generate
the contextual representation of each token. We
first tokenize the input sentences Xi with Word-
Piece tokenization (Sennrich et al., 2016). Two spe-
cial tokens [CLS] and [SEP] are appended to the
first and last positions, respectively. Since the entity
itself does matter in relation extraction, we use an
entity marker vector, consisting of all zeros except
the indices that entities appear in a sentence, to indi-
cate the positions of entities ei1 and ei2. Let H0 be
the hidden state of the first special token [CLS]. We
use a tanh activation function, together with a fully
connected layer, to derive the representation vector
H ′0, given by: H ′0 = W0[tanh(H0)] + b0, where
W0 and b0 are learnable parameters for weights
and biases. We obtain the hidden state vectors of
two entities, H1

e and H2
e , by averaging their respec-

tive tokens’ hidden state vectors. The entity can
be recognized via simple element-wise multiplica-
tion between entity marker vector and token hidden
vector. Specifically, if an entity e consists of mul-
tiple tokens and the indices range from q to r, we
average the hidden state vectors, and also add an
activation operation with a fully connected layer to
generate its representation of that entity, given by:
Hc

e =We

[
tanh

(
1

r−q+1

∑r
t=qHt

)]
+ be, where

c = 1, 2. Note that the representations of two
entities Hc

e(c = 1, 2) in the sentence shares the
same parameters We and be. Then we learn the
attribute vector âis by concatenating H ′0, H1

e , and
H2

e , followed by a hidden layer, given by:

âis =W1(tanh([H
′
0 ⊕H1

e ⊕H2
e ])) + b1, (1)

where W1 and b1 are learnable parameters , the di-
mensionality of âis is d, and ⊕ is the concatenation
operator.

4.3 Model Training
The training of our ZS-BERT model consists of
two objectives. The first is to minimize the dis-
tance between input sentence embedding ais and
the corresponding relation attribute vector âis (i.e.,
positive pairs), meanwhile to ensure embedding
pairs between input sentence embedding and mis-
matched relation (i.e., negative pairs) to be farther
away from each other. The black arrow connecting
ais and âis in Figure 2 is a visualization to indi-
cate that we take both ais and âis into consideration
to achieve this goal. This is also reflected in the
first term of our proposed loss function introduced

https://www.wikidata.org
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Table 1: Datasets. “avg. len.” is average sentence len.

#instances #entities #relations avg. len.
Wiki-KB 1,518,444 306,720 354 23.82
Wiki-ZSL 94,383 77,623 113 24.85
FewRel 56,000 72,954 80 24.95

below. The second objective is to maximize the
accuracy of relation classification based on seen
relations using cross entropy loss. We transform
the relation embedding, along with a softmax layer,
to generate a n-dimensional (n = |Ys|) classifi-
cation probability distribution over seen relations:
p(ys|Xi, θ) = softmax(W ∗(tanh(âis)) + b∗),
where ys ∈ Ys is the seen relation, θ is the model
parameter, W ∗ ∈ Rn×h, h is the dimension of hid-
den layer, and b∗ ∈ Rn. Note that we do not use the
probability distribution but the input sentence em-
bedding âis produced intermediately for predicting
unseen relations under zero-shot settings.

The objective function of ZS-BERT is as follows:

L = (1− α)
N∑
i

max(0, γ − ais · âis +max
i 6=j

(ais · âjs))

− α
N∑
i

yislog(ŷ
i
s),

(2)
where N is the number of samples, ais is the rela-
tion attribute vector, and âis is the input sentence
embedding. The first term in Eq. (2) sets a margin
γ > 0 such that the inner product of the positive
pair (i.e., ais · âis) must be higher than the maxi-
mum of the negative one (i.e., maxi 6=j (a

i
s · â

j
s))

for more than a pre-decided threshold γ. With the
introduction of γ, the loss will be increased ow-
ing to the difference between the positive and the
closest negative pairs. This design of loss func-
tion can be viewed as ranking the correct relation
attribute higher than the closest incorrect one. In
addition, γ is also utilized to avoid the embedding
space from collapsing. If we consider only mini-
mizing the distance of positive pair using loss like
Mean Squared Error, the optimization may lead
to the result that every vector in the embedding
space is too close to one another. We will examine
how different γ values affect the performance in
the experiment. To maintain low computational
complexity, we consider only those mismatched
relations within a batch as the negative samples j.
The second term in Eq. (2) is a commonly used

cross entropy loss, which decreases as the predic-
tion ŷis is correctly classified. Such a multi-task
structure is expected to refine the input sentence
embeddings and simultaneously bring high predic-
tion accuracy of seen relations.

4.4 Generating Zero-Shot Prediction

With the trained model, when the descriptions of
new relations are in hand, we can generate their at-
tribute vectors aju. As the new input sentence Zi ar-
rives, we can also produce its sentence embedding
âiu via: âiu = W1(tanh([H

′
0 ⊕H1

e ⊕H2
e ])) + b1,

where W1 and b1 are learned parameters. The pre-
diction on unseen relations can be achieved by the
nearest neighbor search. For the input sentence
embedding âiu, we find the nearest attribute vector
aju and consider the corresponding relation as the
predicted unseen relation. This can be depicted by:
C(Zi) = argminj dist(â

i
u, a

j
u), where function C

returns the predicted relation of new input sentence
Zi, a

j
u is the j-th attribute vector among all unseen

relations in the embedding space, âiu is the new
input sentence embedding, and dist is a distance
computing function. Here negative inner product
is used as dist since we aim to consider the nearest
neighboring relation as the predicted outcome.

5 Experiments

5.1 Evaluation Settings

Datasets. Two datasets are employed, Wiki-ZSL
and FewRel (Han et al., 2018). Wiki-ZSL is
originated from Wiki-KB (Sorokin and Gurevych,
2017), and is generated with distant supervision.
That said, in Wiki-ZSL, entities are extracted from
complete articles in Wikipedia, and are linked to
the Wikidata knowledge base so that their relations
can be obtained. Since 395, 976 instances (about
26% of the total data) do not contain relations in the
original Wiki-KB data, we neglect instances with
relation “none”. To ensure having sufficient data
instances for each relation in zero-shot learning,
we further filter out the relations that appear fewer
than 300 times. Eventually, we can have yields
Wiki-ZSL, a subset of Wiki-KB.
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On the other hand, FewRel (Han et al., 2018) is
compiled by a similar way to collect entity-relation
triplet with sentences, but had been further filtered
by crowd workers. This ensures the data quality
and class balance. Although FewRel is originally
proposed for few-shot learning, it is also suitable
for zero-shot learning as long as the relation la-
bels within training and testing data are disjoint.
The statistics of Wiki-KB, Wiki-ZSL and FewRel
datasets are shown in Table 1.

ZSL Settings. We randomly select m relations
as unseen ones (m = |Yu|), and randomly split the
whole dataset into training and testing data, mean-
while ensuring that these m relations do not appear
in training data so that Ys ∩ Yu = ∅. We repeat
the experiment 5 times for random selection of m
relations and random training-testing splitting, and
report the average results. We will also vary m
to examine how performance is affected. We use
Precision (P), Recall (R), and F1 as the evaluation
metrics. As for the hyperparameters and configura-
tion of ZS-BERT, we use Adam (Kingma and Ba,
2014) as the optimizer, in which the initial learning
rate is 5e− 6, the hidden layer size is 768, the di-
mension of input sentence embedding and attribute
vector is 1024, the batch size is 4, γ = 7.5, and
α = 0.4.

Competing Methods. The compared methods
consist of two categories, supervised relation ex-
traction (SRE) models and text entailment models.
The former includes CNN-based SRE (Zeng et al.,
2014), Bi-LSTM SRE (Zhang et al., 2015), Atten-
tional Bi-LSTM SRE (Zhou et al., 2016), and R-
BERT (Wu and He, 2019). These SRE models use
different ways to extract features from the input sen-
tences and perform prediction. They have achieved
great performance with fully supervision but fail
to carry out zero-shot prediction. To make them
capable of zero-shot prediction, also to have fair
comparison, instead of originally using a softmax
layer to output a probability vector whose dimen-
sion is equal to the seen relations, we change the
last hidden layer of each SRE competing method to
a fully-connected layer with a tanh activation func-
tion, and the embedding dimension d is the same
as ZS-BERT. The nearest neighbor search is ap-
plied over input sentence embeddings and relation
attribute vectors to generate zero-shot prediction.

Two text entailment models, ESIM (Chen et al.,
2016) and CIM (Rocktäschel et al., 2015), are also
used for comparison. These two models follow a

Table 2: Results with different m values in percentage.

Wiki-ZSL FewRel
m=5 m=5

P R F1 P R F1
CNN 30.31 32.17 30.92 36.41 38.69 37.42
Bi-LSTM 36.73 40.44 38.62 41.99 50.25 45.66
Att Bi-LSTM 35.58 41.26 38.21 39.52 47.24 42.95
R-BERT 39.22 43.27 41.15 42.19 48.61 45.17
ESIM 48.58 47.74 48.16 56.27 58.44 57.33
CIM 49.63 48.81 49.22 58.05 61.92 59.92
ZS-BERT 71.54 72.39 71.96 76.96 78.86 77.90

m=10 m=10
P R F1 P R F1

CNN 20.86 23.61 22.08 22.37 28.15 24.85
Bi-LSTM 25.33 27.91 26.56 24.52 32.02 27.77
Att Bi-LSTM 24.98 29.13 26.90 24.24 31.32 27.28
R-BERT 26.18 29.69 27.82 25.52 33.02 28.20
ESIM 44.12 45.46 44.78 42.89 44.17 43.52
CIM 46.54 47.90 45.57 47.39 49.11 48.23
ZS-BERT 60.51 60.98 60.74 56.92 57.59 57.25

m=15 m=15
P R F1 P R F1

CNN 14.58 17.68 15.92 14.17 20.26 16.67
Bi-LSTM 16.25 18.94 17.49 16.83 27.62 20.92
Att Bi-LSTM 16.93 18.54 17.70 16.48 26.36 20.28
R-BERT 17.31 18.82 18.03 16.95 19.37 18.08
ESIM 27.31 29.62 28.42 29.15 31.59 30.32
CIM 29.17 30.58 29.86 31.83 33.06 32.43
ZS-BERT 34.12 34.38 34.25 35.54 38.19 36.82

well-known implementation (Obamuyide and Vla-
chos, 2018) that formulates zero-shot relation ex-
traction as a text entailment task, which accepts sen-
tence and relation description as input, and output
a binary label indicating whether they are seman-
tically matched. ESIM uses bi-LSTM (Hochreiter
and Schmidhuber, 1997; Graves and Schmidhu-
ber, 2005) to encode two input sequences, passes
them through the local inference model, and pro-
duces the prediction via a softmax layer. CIM
replaces the bi-LSTM block with a conditional ver-
sion, i.e., the representation of sentence is con-
ditioned on its relation description. Note that al-
though there exist other zero-shot relation extrac-
tion approaches such as the approach proposed
by Levy et al. (2017), their approach to formu-
late the ZSL task and their data requirement are
quite different with our present work. To be spe-
cific, their method requires pre-defined question
template, whereas our model does not. Hence it
would be unfair to compare with those approaches.

5.2 Experimental Results

Main Results. The experiment results by varying
m unseen relations are shown in Table 2. First,
it can be apparently found that the proposed ZS-
BERT steadily outperforms the competing meth-
ods over two datasets when targeting at different
numbers of unseen relations. The superiority of ZS-
BERT gets more significant onm = 5. Such results
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Figure 3: Effects on varying the margin parameter γ
and balance coefficient α with m=10 on both datasets.
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Figure 4: Left: Results of ZS-BERT with different frac-
tions of unseen instances availble for training, in which
0.0 refers to the zero-shot result. Right: Results on dif-
ferent distance functions and varied m.

not only validate the effectiveness of leveraging re-
lation descriptions, but also prove the usefulness
of the proposed multi-task learning structure that
better encodes the semantics of input sentences and
have relation attribute vectors been differentiated
from each other. Second, although the text entail-
ment models ESIM and CIM perform well among
competing methods, their performance is still obvi-
ously lower than ZS-BERT. The reason is that their
approaches cannot precisely distinguish the seman-
tics of input sentences and relation descriptions in
the embedding space. Third, we also find that the
improvement of ZS-BERT gets larger when m is
smaller. Increasing m weakens the superiority of
ZS-BERT. It is straightforward that as the number
of unseen relations increases, it becomes more dif-
ficult to predict the right relation since the possible
choices have increased. We also speculate another
underlying reason is that although ZS-BERT can
effectively capture the latent attributes for each re-
lation, relations themselves could be to some extent
semantically similar to one another, and more un-
seen relations will increase the possibility that ob-
tains a predicted relation that is semantically close
but actually wrong. To verify this conjecture, we
will give an example in the case study.

Hyperparameter Sensitivity. We examine how

primary hyperparameters, including the value of
margin parameter γ and the balance coefficient α
in Eq. 2, affect the performance of ZS-BERT. By
fixing m = 10 and varying γ and α, the results in
terms of F1 scores on two datasets are exhibited
on Figure 3. It is noteworthy that γ does have an
impact on performance, since it brings the condi-
tion on whether to increase the loss value, which is
determined by the difference between the positive
pair and negative pair. Nevertheless, not always
the higher values of γ lead to better performance.
This is reasonable that when γ is too low, the dis-
tance between the positive pair and negative pair
would not be far enough. Thus, when performing
nearest neighbor search, it is more likely to reach
the wrong relations. In contrast, when γ gets too
high, it is hard for the training process to converge
at the point that the distance between relations is
expected to be that high. We would suggest setting
γ = 7.5 to derive satisfying results across datasets.
As for the balance coefficient α in the loss function,
we find that α = 0.4 can achieve the best perfor-
mance, indicating that the margin loss plays a more
significant role in training ZS-BERT. Also notice
that when α = 1.0, the performance drops dramat-
ically, showing that the margin loss is essential to
our model. This is also reasonable that since our
model relies on the quality of embeddings, there-
fore totally relying on cross entropy loss leads to
failure of zero-shot prediction. The better sepa-
ration between embeddings of different relations,
the more likely our model can generate the accu-
rate zero-shot prediction. In addition, while the
nearest neighbor search is performed to generate
the zero-shot prediction, we think the choice of
distance computing function dist() can also be an
hyperparameter. By applying inner product, Eu-
clidean distance, and the cosine similarity as dist()
in ZS-BERT, we report their F1 scores with dif-
ferent m on two datasets in the right of Figure 4.
The results inform us that inner product is a proper
distance function for zero-shot relation extraction
with ZS-BERT.

Few-shot Prediction. To understand the capa-
bility of ZS-BERT, we conduct the experiment of
few-shot prediction. By following the setting of
an existing work (Obamuyide and Vlachos, 2018),
we make a small fraction of unseen data instances
available at the training stage. That said, for each
originally unseen relation, we move a small frac-
tion of its sentences, along with the relation de-
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Figure 5: t-SNE visualization of the sentence embeddings for similar (a)(c) and dissimilar relations (b)(d).

Table 3: List of four cases, in which head and tail enti-
ties are highlighted by green and blue, respectively.

Input Sentence True Predicted

(1)
When promoting Anaconda, Minaj confirmed
plans of a tour in support of The Pinkprint in
an interview with Carson Daly on AMP Radio.

tracklist publisher

(2)
Heaven and Hell as they are understood in Christian
theology are roughly analogous to the Jewish Olam
habah and Gehenna , with certain major differences.

opposite
of

influenced
by

(3) (TOEO) was an MMORPG set in the world of the
popular Namco PlayStation title, Tales of Eternia. publisher manufacturer

(4) The inverse of admittance is impedance,
and the real part of admittance is conductance.

opposite
of

influenced
by

scription, from the testing to the training stage. By
varying the fraction in x-axis, we report the results
of few-shot prediction in Figure 4. We can find that
that ZS-BERT can reach about 80% on F1 score
with only 2% of unseen instances as supervision.
Such results demonstrate the ability to recognize
rare samples and the capability of few-shot learn-
ing for the proposed ZS-BERT. As expected, the
more instances belonging to unseen relations avail-
able at the training stage, the higher the F1 score
is. When the fraction equals to 10%, ZS-BERT can
even achieve 90% F1 score on Wiki-ZSL dataset.

5.3 Case Study

We categorize four types of incorrectly predicted
unseen relations for the analysis: (1) The predicted
relation is not precise for the targeted entity pair
but may be suitable for other entities that also ap-
pear in the sentence. (2) The true relation is not
appropriate because it comes from distant supervi-
sion. (3) The predicted relation is ambiguous or is
a synonym of other relations. (4) The relation is
wrongly predicted but should be able to be correctly
classified. For each of these four types, we provide
an example listed in Table 3. In case (1), the tar-
geted entities are Anaconda and The Pinkprint,
and ZS-BERT yields publisher as the prediction,
which is actually correct if the targeted entities are
Anaconda and Minaj. This shows ZS-BERT is
able to infer the possible relation for entities in the

given sentence, but sometimes could be misled by
non-targeted entities even though we have an en-
tity mask to indicate the targeted entities. In case
(2), it shows the noise originated from distant la-
beling. That is, even human being cannot identify
the relation between Heaven and Hell is opposite
of in this specific sentence. They just happened to
appear together and their relation recorded in Wiki-
data is opposite of. In case (3), the predicted unseen
relation is manufacturer, while the ground truth is
publisher. Both manufacturer and publisher de-
scribe someone make or produce something, al-
though their domains are slightly different. This
exhibits the capability of ZS-BERT to identify the
input sentence with an abstract attribute because
relations possessing similar semantics will have
similar attribute vectors in the embedding space.
Finally, in case (4), the model gives a wrong predic-
tion that is not even close or related, which may due
to the noise or information loss when transferring
knowledge between relations.

Among these four groups, we are especially in-
terested in case (3) since the semantic similarity be-
tween relations in the embedding space greatly im-
pacts the performance. We select five semantically-
distant relations, and the other five relations that
possess similar semantics between two or three
of them, to inspect their distributions in the em-
bedding space. We feed sentences with these re-
lations and generate their embeddings using ZS-
BERT and R-BERT (Wu and He, 2019) for com-
parison. We choose R-BERT because it is the
strongest embedding-based competing method for
zero-shot prediction by nearest neighbor search.
Note that since the predictions by text entailment-
based models, ESIM and CIM, neither resort to
similarity search nor directly predict unseen rela-
tion at one time, we cannot have them compared in
this analysis. We visualize the embedding space by
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t-SNE (Maaten and Hinton, 2008), as shown in Fig-
ure 5. We can find that when the relations are some-
what similar in their meanings (Figure 5(a),(c)),
some of the data points are mingled with differ-
ent clusters, as they indeed have close semantic
relationships. Take subsidiary and owned by as ex-
amples, Company A is a subsidiary of company B
and Company A is owned by company B refer to the
same thing. This happens on both ZS-BERT and
R-BERT but to a different extent. It is obvious that
the embeddings produced by R-BERT are more
tangled. We also plot the other five relations that
there is no ambiguity among them (Figure 5(b),(d)).
Apparently their embeddings are more separated
between different relations. It is also obvious that
the embeddings generated by ZS-BERT lead to
larger inter-relation distance. This again exhibits
the usefulness of the proposed ranking loss and
multi-task learning structure.

6 Conclusions

In this work, we present a novel and effective
model, ZS-BERT, to tackle the zero-shot relation
extraction task. With the multi-task learning struc-
ture and the quality of contextual representation
learning, ZS-BERT can not only well embed in-
put sentences to the embedding space, but also
substantially improve the performance. We have
also conducted extensive experiments to study dif-
ferent aspects of ZS-BERT, from hyperparameter
sensitivity to case study, and eventually show that
ZS-BERT can steadily outperform existing relation
extraction models under zero-shot settings. Further-
more, learning effective embeddings for relations
might also be helpful to semi-supervised learning
or few-shot learning by utilizing prototypes of rela-
tions as the auxiliary information.
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